Abstract
Soil and groundwater contamination with lead (Pb) poses serious challenges for the environment. Activated carbon (AC) and biochar have huge potential application in the in-situ remediation processes through permeable reactive barriers (PRB). Spectral induced polarization (SIP) technique recently showed promises in nondestructively monitoring the spatio-temporal characteristics of physical, chemical and biological processes in porous media. In this study SIP technique was used for monitoring Pb remediation by AC and biochar in column scale. The calculated characteristic grain/pore size evolutions from SIP signals on AC, agreed well with the size of precipitates measured by SEM and mercury intrusion porosimetry (MIP) methods. The content increment process of the retained Pb on AC was also recorded via the magnitude increment of the imaginary conductivity. The mechanisms of Pb–AC and Pb-biochar interactions were investigated using SEM-EDS, TEM, FTIR, XRD, and XPS measurements. It showed that AC immobilizes through physical adsorption and precipitation, whereas complexation with functional groups is the remediation mechanism for biochar. Furthermore, the observed SIP responses of both AC and biochar are two orders of magnitude higher than those of typical natural soils or silica materials. This distinct difference is an additional advantage for the field application of SIP technique in PRB scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.