Abstract

To determine the content and distribution of Na, K, Ca, P, Mg, S, Cu, Mn, Fe and Zn in the body of pasture-fed young horses and then use a factorial model to calculate the dietary mineral requirements for growth. Twenty-one foals were killed at about 150 days of age and the organs, soft tissues, skin and bones and a sample of muscle were dissected out and weighted. The mineral concentrations of elements in all soft tissues and bones were measured by inductively coupled emission spectrometry. The total mineral element composition associated with a tissue was determined from the weight of tissue and its mineral element concentration. Expressed as a percent of total body mineral elements, muscle contained 20% Na, 78% K, 32% Mg, 62% Cu, 36% Mn and 57% Zn, bone contained 47% Na, 99% Ca, 81% P, 62% Mg, 30% Mn and 28% Zn while the organs accounted for a smaller percentage ranging from 0.06% for Ca to 26% for Fe. In liver Cu accounted for 9.2% of total body Cu. Each kilogram of empty body weight was associated with 1.0 g Na, 2.5 g K, 17.1 g Ca, 10.1 g P, 0.4 g Mg, 1.1 mg Cu, 0.39 mg Mn, 52.5 mg Fe and 21.4 mg Zn. The mineral element content of body weight gain is a component used in the factorial model to determine dietary mineral element requirements for growth. The calculated dietary mineral requirements, expressed per kg dry matter, for a 200 kg horse gaining 1.0 kg/day were 1.0 g Na, 2.1 g K, 4.6 g Ca, 3.5 g P, 0.7 g Mg, 4.5 mg Cu and 25 mg Zn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call