Abstract

Mercury (Hg) was quantified using cold vapour-atomic absorption spectrometry (CV-AAS) in the fruiting bodies of nine edible and five inedible mushrooms and in underlying soil substrate samples. In total, 404 samples comprising caps and stalks and 202 samples of soil substrate (0–10 cm layer) were collected in 1996 from Trójmiejski Landscape Park, northern Poland. Mean Hg concentrations in the soil substrate for different species varied between 10 ± 3 and 780 ± 500 ng g -1 dry wt (range 2.3–1700). Among edible mushroom species, Horse Mushroom (Agaricus arvensis), Brown Birch Scaber Stalk (Leccinum scabrum), Parasol Mushroom (Macrolepiota procera), King Bolete (Boletus edulis) and Yellow-cracking Bolete (Xerocomus subtomentosus) contained elevated concentrations of Hg ranging from 1600 ± 930 to 6800 ± 4000 ng g-1 dry wt in the caps. Concentrations of Hg in the stalks were 2.6 ± 1.1 to 1.7 ±1.0 times lower than those in the caps. Some mushroom species investigated had high Hg levels when compared with specimens collected from the background reference sites elsewhere (located far away from the big cities) in northern Poland. Bioconcentration factors of Hg in the caps of Horse Mushroom, Parasol Mushroom and Brown Birch Scaber Stalk were between 150 ± 58 and 230 ± 150 ng g-1 dry wt, respectively, and for inedible Pestle-shaged Puffball (Claviata excipulformis) was 960 ± 300 ng g-1 dry wt. Linear regression coefficients between Hg in caps and in stalks and Hg soil concentrations showed a positive relationship for A. arvensis and Horse mushroom (p < 0.05) and a negative correlation for the caps of Death Caps (Amanita phalloides) and Woolly Milk Cap (Lactarius torminosus) (p < 0.05), while for other species no clear trend was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.