Abstract
Computer-aided text analyses have gained a lot of attention recently. Applied to different types of business communication such as earnings announcements, analyst reports, or IPO prospectuses, they have been used to extract relevant information for financial market participants. A large number of studies employ dictionary-based approaches by referring to specific word lists. Since these lists have been predominantly compiled for the English language, the respective analyses have focused on English business texts. In order to amplify the application of content analyses to other languages, we create a German dictionary designed to measure the textual sentiment of business communication. Our dictionary is based on the English dictionary by Loughran and McDonald (J Finance 66:35–65. doi: 0.1111/j.1540-6261.2010.01625.x, 2011), which is commonly used for examining finance- and accounting-specific texts. We discuss the set-up of our dictionary and extensively test its quality. We further compare our dictionary to German general language dictionaries and to a machine-learning procedure and provide evidence for its ability to capture market-relevant textual sentiment of German business communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.