Abstract
This paper introduces a novel content-adaptive image downscaling method. The key idea is to optimize the shape and locations of the downsampling kernels to better align with local image features. Our content-adaptive kernels are formed as a bilateral combination of two Gaussian kernels defined over space and color, respectively. This yields a continuum ranging from smoothing to edge/detail preserving kernels driven by image content. We optimize these kernels to represent the input image well, by finding an output image from which the input can be well reconstructed. This is technically realized as an iterative maximum-likelihood optimization using a constrained variation of the Expectation-Maximization algorithm. In comparison to previous downscaling algorithms, our results remain crisper without suffering from ringing artifacts. Besides natural images, our algorithm is also effective for creating pixel art images from vector graphics inputs, due to its ability to keep linear features sharp and connected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.