Abstract

Background Remotely sensed burned area products are critical to support fire modelling, policy, and management but often require further processing before use. Aim We calculated fire history metrics from the Landsat Burned Area Product (1984–2020) across the conterminous U.S. (CONUS) including (1) fire frequency, (2) time since last burn (TSLB), (3) year of last burn, (4) longest fire-free interval, (5) average fire interval length, and (6) contemporary fire return interval (cFRI). Methods Metrics were summarised by ecoregion and land ownership, and related to historical and cheatgrass datasets to demonstrate further applications of the products. Key results The proportion burned ranged from 0.7% in the Northeast Mixed Woods to 74.1% in the Kansas Flint Hills. The Flint Hills and Temperate Prairies showed the highest burn frequency, while the Flint Hills and the Sierra Nevada and Klamath Mountains showed the shortest TSLB. Compared to private, public land had greater burned area (19 of 31 ecoregions) and shorter cFRI (25 of 31 ecoregions). Conclusions Contemporary fire history metrics can help characterise recent fire regimes across CONUS. Implications In regions with frequent fire, comparison of contemporary with target fire regimes or invasive species datasets enables the efficient incorporation of burned area data into decision-making.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.