Abstract

Valence configurations of active sites are essential for modulating the electronic structure of the non-noble metal electrocatalysts in water splitting. However, synchronously engineering the valence states of different elements to inverse ones has been a key challenge in the integrated synthesis environment. Herein, for the first time, a novel superstructure of inverse spinel NiCoFe oxide nanocubes with contemporaneous valence regulation to preferred Co2+ and Ni3+ (NiIIICoIIFe-O@NF, NF stands for nickel foam), has been developed by in situ topotactic chemical transformation. NiIIICoIIFe-O@NF can attain a current density of 10 mA cm−2 at a low cell voltage of 1.455 V in 1 M KOH when used as bifunctional catalysts. Density functional theory calculations suggested that the favorable Co2+ and Ni3+ act synergistically to lower down ΔGH* for HER and the OER overpotential in an optimal pathway. Our study probes the construction and understanding of the heterogeneous valence configuration in a single phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.