Abstract

3-Hydroxypropionic acid (3-HP) is a commercially valuable platform chemical from which an array of C3 compounds can be generated. Klebsiella pneumoniae has been considered a promising species for biological production of 3-HP. Despite a wealth of reports related to 3-HP biosynthesis in K. pneumoniae, its commercialization is still in infancy. The major hurdle hindering 3-HP overproduction lies in the poor understanding of glycerol dissimilation in K. pneumoniae. To surmount this problem, this review aims to portray a picture of 3-HP biosynthesis, involving 3-HP-synthesizing strains, biochemical attributes, metabolic pathways and key enzymes. Inspired by the state-of-the-art advances in metabolic engineering and synthetic biology, here we advocate protocols for overproducing 3-HP in K. pneumoniae. These protocols range from cofactor regeneration, alleviation of metabolite toxicity, genome editing, remodeling of transport system, to carbon flux partition via logic gate. The feasibility for these protocols was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.