Abstract

AbstractBenthic macrofauna can influence inputs and transformations of energy and matter in estuaries, affecting both the stocks of vital materials (e.g. carbon, oxygen) and the rates of key processes (e.g. organic matter decomposition, nutrient uptake). Although a number of studies have identified shifts in functional groups or biological traits in relation to anthropogenic stressors, there have been few field‐based assessments of changes in functioning associated with stress gradients. We used a comparative experimental approach to investigate functioning on two sandflats with differing exposures to urban contaminants. Apart from significant differences in sediment contaminant concentrations (43.2 ± 1.8 mg kg−1Zn and 15.6 ± 0.9 mg kg−1Pb at the Pollen site; 17.7 ± 0.7 mg kg−1Zn and 7.9 ± 0.9 mg kg−1Pb at the Waiheke site), the two sandflats were readily comparable: both had similar sediment grain size distributions and were dominated by the same macrofaunal species; and both were in non‐eutrophic New Zealand marine reserves with low ambient sediment organic matter content. To better understand the effects of contaminants on biologically mediated transformations of organic matter into inorganic nutrients, we manipulated sediment organic matter content and macrofaunal abundance in standardized treatments at each site. Fluxes of oxygen and ammonium, which are linked to key sandflat processes such as organic matter decomposition and benthic photosynthesis, were measured as response variables 1 week after the experimental manipulations. We predicted more efficient organic matter processing on the uncontaminated flat and thus expected to see elevated ammonium efflux in response to organic enrichment treatments at this site. Higher rates of benthic photosynthesis were predicted for plots with higher ammonium efflux, as ammonium is a readily utilizable form of limiting inorganic nitrogen. We documented significant positive relationships between ammonium uptake and benthic primary production on the uncontaminated flat, but weaker/insignificant relationships at the contaminated site. Our data were consistent with theories of increased variability and a decoupling of system processes with increasing amounts of stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.