Abstract

The Sefid-rud River is a significant river on the southern coast of the Caspian Sea in Iran. In this study, we collected 28 samples of surface sediments and water to assess the level of metal contamination. Chemical analysis revealed that the average concentrations of heavy metals in both sediments and water increase from upstream to downstream. There is no clear significant relationship observed between changes in the values of investigated elements in sediments and water. The levels of these elements in the sediments, exceed toxic response thresholds. In the water samples, As, Ni and V concentrations exceed the WHO standard values. According to the Igeo, EF and PLI indices, the sediments at most stations are not contaminated by any of the elements. The CF and Dc indices suggest low contamination levels at all stations. The NIPI and ecological risk indices (Er and RI) indicate non-polluted conditions at all stations except SF22, SF20, SF11, and SF6. The MI and HEI indices indicate pollution in all water samples of the Sefid-rud, but critical values are only observed at SF5 and SF15. The other stations show no contamination. The Cf index indicates high pollution levels for all elements except Cu, Zn, and Pb. The upstream area poses a relatively high and considerable ecological risk according to the PERI index. In conclusion, the sediments of the Sefid-rud River have a higher potential for the exchange of toxic substances compared to the aquatic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.