Abstract
Endotoxin was detected in all erythropoietin preparations tested and was removed from four lots, without loss of erythropoietic activity, by adsorption with limulus amebocyte lysate. Comparison of adsorbed (endotoxin-depleted) and nonadsorbed (endotoxin-containing) erythropoietin preparations demonstrated significant inhibition of CFU- e and BFU-e in vitro by nonadsorbed erythropoietin at concentrations higher than 0.25 U/ml and 2.0 U/ml, respectively. CFU-e and BFU-e were inhibited significantly by readdition in vitro of 10(-5)-10(-3) mug of endotoxin per unit of limulus-adsorbed erythropoietin. Administration of saline or 6 U of nonadsorbed or adsorbed erythropoietin twice a day for 4 days of CF1 mice resulted in reticulocyte counts of 2.1%, 9.9%, and 15.9%, respectively. Nonadsorbed erythropoietin resulted in a 29% decrease in erythropoiesis, a 42% decrease in CFU-e, and a 16% increase in granulopoiesis in the marrow, whereas adsorbed erythropoietin caused a 28% increase in erythropoiesis, no significant change in CFU-e and a 19% decrease in granulopoiesis in the marrow. Both preparations resulted in marked increases in splenic erythropoiesis and granulopoiesis. The effects of adsorbed erythropoietin are similar to those produced following stimulation of hematopoiesis by endogenous erythropoietin. Hemopoietic changes induced by nonadsorbed erythropoietin in vivo and in vitro are affected substantially by contamination of the erythropoietin preparations with endotoxin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.