Abstract

A total of 42 samples of road dust were collected along ring road, city centre, city side, and freeway in Urumqi, China. Total concentrations of Cd, Cr, Cu, Ni, Pb, Mn, Be, Co, Zn, and U were determined by using the inductively coupled plasma-mass spectrometry in order to assess and to compare road dust contamination levels of metals among the four roads. The results show that, among the four categories of roads, mean concentrations of Co and U vary little. City centre locations show strong enrichments of Cd, Cu, Pb, and Be. Along the ring road, the highest mean concentrations were found for Cr, Ni, Mn, and Co. However, the highest concentrations of Zn and U were found along the freeway. The cluster analysis shows that three main groups can be distinguished. Every group may be associated with different main sources and concentrations of the metals. The results of contamination assessment reveal that, among all of the potential toxic metals, Cd, Cu, and Zn pollution were obviously heavier with moderate or high contamination indices for most road dust samples, while Cr, Ni, and Pb contamination were lower along the four categories of roads. Compared with the city side, Cd, Cu, Pb, Ni, and Zn contamination were heavier along the ring road, the city centre, and the freeway with high traffic density. Low Pb contamination or no contamination in all the road dust samples may be related to the increasing usage of lead-free petrol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.