Abstract

In this report, we introduce a novel method based on low-frequency noise analysis for the assessment of quality and pattern of inhomogeneity in intentionally-aged Hall effect sensors featuring hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene mesa on semi-insulating high-purity on-axis 4H-SiC(0001), all passivated with a 100-nm-thick atomic-layer-deposited Al2O3 layer. Inferring from the comparison of the measured noise and one calculated for a homogeneous sensor, we hypothesize about possible unintentional contamination of the sensors’ active regions. Following in-depth structural characterization based on Nomarski interference contrast optical imaging, confocal micro-Raman spectroscopy, high-resolution Transmission Electron Microscopy and Secondary Ion Mass Spectrometry, we find out that the graphene’s quasi-free-standing character and p-type conductance make the Al2O3/graphene interface exceptionally vulnerable to uncontrolled contamination and its unrestrained lateral migration throughout the entire graphene mesa, eventually leading to the blistering of Al2O3. Thus, we prove the method’s suitability for the detection of these contaminants’ presence and location, and infer on its applicability to the investigation of any contamination-induced inhomogeneity in two-dimensional systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.