Abstract

We study regressions with multiple treatments and a set of controls that is flexible enough to purge omitted variable bias. We show these regressions generally fail to estimate convex averages of heterogeneous treatment effects—instead, estimates of each treatment’s effect are contaminated by nonconvex averages of the effects of other treatments. We discuss three estimation approaches that avoid such contamination bias, including the targeting of easiest-to-estimate weighted average effects. A reanalysis of nine empirical applications finds economically and statistically meaningful contamination bias in observational studies; contamination bias in experimental studies is more limited due to smaller variability in propensity scores. (JEL C21, C31, C51, H75, I21, I28)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.