Abstract
The use of Focused Ion Beam (FIB) instrument's to analyze and prepare samples that are radioactive requires attentiveness to the materials that are dislodged and free inside the chamber. Radioactive sputtered material must be understood even when observed at trace concentrations. Measurements using liquid scintillation counting and high purity germanium detectors were used to evaluate contamination on accessible surfaces inside a focused ion beam chamber that was used in the preparation of samples that were radioactive. The maximum removable contamination found was 0.27 0.4 Bq cm(-2), on the focused ion beam wall with 0.24 0.019 Bq cm(-2) on the door. Although these magnitudes of removable contamination are inconsequential for activation products, these same magnitudes of actinides, for example 239Pu, would represent 3.2% of an Annual Limit of Intake. This might be considered significant if one examines the relatively infrequent use of this device for the preparation of radioactive samples. Predicted activities of sputtered material were found using the software Transport of Ions in Matter, estimating that 0.003% of a radioactive samples activity is released into the FIB chamber. A used secondary electron detector's activity was measured to be 383.7 8.1 Bq. Preferential build-up of sputtered materials due to temperature or static charge gradients was considered. No temperature gradients were observed. Static charge gradients were measured inside the chamber varying between 0.057% below the mean to 34% higher than the mean. However, the magnitudes of contamination measured did not correlate to static charge gradients. Deposition in the chamber appears to have no mechanical cause but rather is sporadic however, measureable. Experience to date has been limited to samples of low activity; nevertheless, contamination inside the chamber was observed. Users should anticipate higher levels of readily dispersible radioactive contamination within the FIB as sample activity increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.