Abstract

The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk's composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.