Abstract

Network immunization is an automated task in the field of network analysis that involves protecting a network (modeled as a graph) from being infected by an undesired arbitrary diffusion. In this article, we consider the spread of harmful content in social networks, and we propose CONTAIN, a novel COmmuNiTy-based Algorithm for network ImmuNization. Our solution uses the network information to (1) detect harmful content spreaders, and (2) generate partitions and rank them for immunization using the subgraphs induced by each spreader, i.e., employing CONTAIN. The experimental results obtained on real-world datasets show that CONTAIN outperforms state-of-the-art solutions, i.e., NetShield and SparseShield, by immunizing the network in fewer iterations, thus, converging significantly faster than the state-of-the-art algorithms. We also compared our solution in terms of scalability with the state-of-the-art tree-based mitigation algorithm MCWDST, as well as with NetShield and SparseShield. We can conclude that our solution outperforms MCWDST and NetShield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.