Abstract
We propose a segmentation method based on Polya's urn model for contagious phenomena. Initial labeling of the pixel is obtained using a Maximum Likelihood (ML) estimate or the Nearest Mean Classifier (NMC), which are used to determine the initial composition of an urn representing the pixel. The resulting urns are then subjected to a modified urn sampling scheme mimicking the development of an infection to yield a segmentation of the image into homogeneous regions. Examples of the application of this scheme to the segmentation of synthetic texture images, Ultra-Wideband Synthetic Aperture Radar (UWB SAR) images and Magnetic Resonance Images (MRI) are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.