Abstract

Radiofrequency (RF) probes based on 50- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Omega$</tex-math></inline-formula> planar transmission lines play a key role in almost every stage of RF device development, establishing the physical contact between high-end instrumentation and the device. With the continuous downscaling of semiconductor technologies to reach into the millimeter-wave (30–300 GHz) and Terahertz (300 GHz to 3 THz) bands and devices exhibiting broader frequency response, current RF probe technology is the Achilles heel for precise and repeatable measurements. Here, we propose a novel RF probe technology based on the near-field coupling of single-mode dielectric waveguide structures, which according to our full-wave simulations provide an extremely broad frequency range covering from 0 Hz up to 340 GHz, the largest continuous bandwidth reported to date. A concept demonstrator using this approach shows contactless RF probing on test structures, which shows the path toward continuous measurements across the microwave, millimeter-wave, and Terahertz range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call