Abstract

Characterization of electronic properties of nanomaterials usually involves fabricating field effect transistors and deriving materials properties from device performance measurements. The difficulty in fabricating electrical contacts to extremely small-sized nanomaterials as well as the intrinsic heterogeneity of nanomaterials makes it a challenging task to measure the electronic properties of large numbers of individual nanomaterials. Here, we utilize a scanning probe technique, the dielectric force microscopy (DFM) to address the challenges. The DFM technique measures the low frequency dielectric response of nanomaterials, which is intrinsically related to their electrical conductivity. The incorporation of a gate bias voltage in DFM measurements allows for charge carrier density modulation, which is exploited to determine the carrier type in nanomaterials such as semiconducting single-walled carbon nanotubes (SWNTs) and ZnO nanowires (ZnO NWs). This technique avoids the need of electrical contacts and inherits the spatial mapping capability of scanning probe microscopy, as manifested in the imaging of intratube metallic/semiconducting junctions in SWNTs. We expect the DFM technique to find broad applications in the characterization of various nanoelectonic materials and nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call