Abstract

With the accelerated construction of the smart grid, new energy sources such as photovoltaic and wind power are connected to the grid. In addition to power frequency, the current signal of power grid also includes several DC signals, as well as medium-high and high-frequency transient signals. Traditional current sensors for power grids are bulky, have a narrow measurement range, and cannot measure both AC and DC at the same time. Therefore, this paper designs a non-intrusive, AC-DC wide-bandwidth current sensor based on the composite measurement principle. The proposed composite current detection scheme combines two different isolation detection technologies, namely tunneling reluctance and the Rogowski coil. These two current sensing techniques are complementary (tunneling magnetoresistive sensors have good low-frequency characteristics and Rogowski coils have good high-frequency characteristics, allowing for a wide detection bandwidth). Through theoretical and simulation analysis, the feasibility of the composite measurement scheme was verified. The prototype of composite current sensor was developed. The DC and AC transmission characteristics of the sensor prototype were measured, and the sensitivity and linearity were 11.96 mV/A, 1.14%, respectively. Finally, the sweep current method and pulse current method experiments prove that the designed composite current sensor can realize the current measurement from DC to 17 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.