Abstract

Abstract Horizontal wells represent a growing percentage of the rig count in unconventional gas wells in the United States. With effective stimulation techniques they have been shown to have favorable economics compared to vertical wells in the same reservoir. This is because of the large hydraulic fracture surface area that can be created from horizontal wells if effective stimulation techniques are employed. The Barnett Shale formation is the reservoir that has seen the largest growth using this technique in recent years. Estimated to extend over 54,000 square miles, the Barnett Shale formation displays different reservoir characteristics and properties in its different regions. The heterogeneous nature of this unconventional play makes standardization of the completion process problematic. One technology that has been used with increasing regularity to understand complex fracture geometry is microseismic (MS) fracture mapping1. Recent technology advances have made it possible for an onsite computer to process the thousands of seismic traces and deliver MS events hypocentral locations in a matter of seconds to a viewer in the fracturing treatment vehicle. Microseismic mapping used in conjunction with wellbore images and sonic logs has shed considerable light on the challenges faced in this reservoir. Massive water fracs are currently used to create complex hydraulic fracture networks. This stimulation technique, while successful, often leaves behind unstimulated sections of the reservoir. In order to achieve optimum horizontal well stimulation the lateral section must be characterized so that geologically different intervals can be identified and the proper stimulation technique employed. Technology has progressed to the point that microseismic monitoring of hydraulic fracture stimulation can efficiently provide extensive diagnostic information on fracture development and geometry in real-time. The case studies in this paper show how the use of real-time fracture mapping allows for on-the-fly changes in fracture design. Mapping also impacts the perforation strategy and restimulation designs to maximize the Effective Stimulation Volume (ESV). ESV is defined as the reservoir volume that has been effectively contacted by the stimulation treatment as determined by microseismic event locations and density. This paper further correlates MS activity to log data and illustrates how logs can be used to estimate fracture geometry. This data is then used to design a fit-for-purpose stimulation that has the greatest chance of maximizing the ESV and production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.