Abstract
Increasing the area of interdigitated back-contact (IBC) solar cells featuring a busbar contact geometry requires the use of longer fingers. The finger resistance will, thus, be increased if the thickness of the metallization is kept constant. In order to maintain a thin metallization, it is beneficial to increase the number of busbars per contact. However, using more than one busbar for each polarity implies an asymmetric contact geometry. As a consequence, under operation, the busbars of the same polarity carry different currents. Due to voltage drops over unavoidable electrical resistances, this may lead to significant potential differences between these busbars. Since current–voltage characteristics are usually measured using separate sense contacts for the voltage measurement, the position and number of these contacts may considerably affect the shape of the resulting current–voltage characteristic and, thus, the fill factor. By means of simulations with the circuit simulator LTSpice, we show that a permanent contacting with soldered tabs allows for a correct determination of the fill factor. A chuck used for temporary contacting should feature at least one sense contact per busbar and pin contacting resistances below 30 mΩ in order to keep the fill factor error below 0.5% absolute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.