Abstract

Due to the emergence of sub-7 nm technologies, next generation CMP slurry formulations have continued to increase in additive (nanoparticle and chemistry) complexity to meet stringent device specifications. Therefore, it is essential to probe the molecular level interactions at the nanoparticle/slurry chemistry/substrate interface and in turn correlate them to key performance metrics such as removal rate, post CMP defects, and planarization efficiency. This work will address key interactions through a series of case studies focusing on the role of supramolecular structure and cleaning method (i.e. contact vs. non-contact) during STI post-CMP cleaning, probing the impact of supramolecular structure and mode of cleaning relevant to Cu post-CMP, and development of a biomimetic matrix with chemical activity to act as a brush in STI post-CMP cleaning processes. Results show in both BEOL and FEOL post-CMP cleaning there is a strong correlation to the delivery and “soft” nature of the chemistry to allow for effective particle removal at low mechanical force and prevent further defect formation. Furthermore, this work shows a clear correlation between supramolecular structure and particle removal efficiency under both contact and non-contact post-CMP processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.