Abstract

The global and national response to the COVID-19 pandemic has been inadequate due to a collective lack of preparation and a shortage of available tools for responding to a large-scale pandemic. By applying lessons learned to create better preventative methods and speedier interventions, the harm of a future pandemic may be dramatically reduced. One potential measure is the widespread use of contact tracing apps. While such apps were designed to combat the COVID-19 pandemic, the time scale in which these apps were deployed proved a significant barrier to efficacy. Many companies and governments sprinted to deploy contact tracing apps that were not properly vetted for performance, privacy, or security issues. The hasty development of incomplete contact tracing apps undermined public trust and negatively influenced perceptions of app efficacy. As a result, many of these apps had poor voluntary public uptake, which greatly decreased the apps’ efficacy. Now, with lessons learned from this pandemic, groups can better design and test apps in preparation for the future. In this viewpoint, we outline common strategies employed for contact tracing apps, detail the successes and shortcomings of several prominent apps, and describe lessons learned that may be used to shape effective contact tracing apps for the present and future. Future app designers can keep these lessons in mind to create a version that is suitable for their local culture, especially with regard to local attitudes toward privacy-utility tradeoffs during public health crises.

Highlights

  • At the end of 2019, a novel coronavirus was determined to be associated with a group of pneumonia cases in Wuhan, China

  • During recent Ebola outbreaks, contact tracing apps developed in Guinea and Sierra Leone have provided a means for contact tracers to increase the speed and accuracy of contact tracing and efficient centralization of real-time data, as well as the coordination of resources and interventions [5,6]

  • This paper aims to accomplish this goal by providing background on common strategies for app-based contact tracing, discussing the advantages and limitations of several prominent COVID-19 contact tracing apps, and elucidating the privacy and nonprivacy concerns that have affected their adoption and reliability during the COVID-19 pandemic

Read more

Summary

Introduction

At the end of 2019, a novel coronavirus was determined to be associated with a group of pneumonia cases in Wuhan, China. Signal strength was demonstrated to have complex interactions with the environment in which measurements took place, including signal reflection by tram walls and absorption by bodies (at 2.4 Hz), with no clear trend in signal attenuation with respect to distance based on these complex effects More such studies are required, this data suggests that the inherent flaws of Bluetooth-based contact tracing, with small changes such as models of devices and signal absorption and reflection having an outsized impact on outcomes, may significantly decrease the efficacy of the GAEN API. According to the prerelease report card issued by the Irish Council for Civil Liberties and Digital Rights Ireland, there were concerns regarding app privacy and security structure [64] Most significantly, these groups noted the lack of efficacy data to back up claims of high accuracy, the need for timely deletion of personal data which could be extrapolated to yield user location, and concern over the use of closed-source Apple/Google software and control of health data by foreign private entities. Other than the analysis of the SwissCovid and these theoretical models, evaluations of specific contact tracing apps were not readily available at the time of writing

Conclusion
64. HSE Covid Tracker App
Findings
71. Contact Transmission of COVID-19 in South Korea
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call