Abstract
We give a complete topological classification of defect lines in cholesteric liquid crystals using methods from contact topology. By focusing on the role played by the chirality of the material, we demonstrate a fundamental distinction between "tight" and "overtwisted" disclination lines not detected by standard homotopy theory arguments. The classification of overtwisted lines is the same as nematics, however, we show that tight disclinations possess a topological layer number that is conserved as long as the twist is nonvanishing. Finally, we observe that chirality frustrates the escape of removable defect lines, and explain how this frustration underlies the formation of several structures observed in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.