Abstract
Stress plays an important role in the magnetic properties of ferromagnetic materials. Sliding contact in hard disk drives can lead to tribological failures of the disk in terms of data loss and demagnetization. However, the relationship between contact stress-induced magnetization changes and tribological failures of magnetic recording disk is rarely discussed. In this study, the contact stress-induced micromagnetic behavior in magnetic recording disk was investigated using micromagnetic simulation. A micromagnetic model including the magnetostriction effect into the Landau–Lifshitz–Gilbert equation was developed to simulate the stress effect on the magnetization changes. Then finite element analysis was used to calculate the critical stresses for the occurrence of data loss and demagnetization of perpendicular magnetic recording disk under sliding contact according to our previous experimental results. Based on these simulation results, it was found that the magnetic moment decreased by 8.9 % under the critical stress for data loss, and it rotated 55.7° under the critical stress for demagnetization. In addition, the simulated static domain structures when data loss and demagnetization occur were in agreement with the previously reported experimental results. Finally, the relationship between the contact stress-induced tribological failures and micromagnetic behavior of the magnetic disk was illustrated. It was proposed that data loss is caused by the magnetization reduction, while demagnetization is caused by the magnetization rotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.