Abstract

A new, innovative procedure called point load superposition for determining the contact stresses in mating gear teeth is presented. It is believed that this procedure will greatly extend both the range of applicability and the accuracy of gear contact stress analysis. Point load superposition is based upon fundamental solutions from the theory of elasticity. It is an iterative numerical procedure which has distinct advantages over the classical Hertz method, the finite element method, and over existing applications with the boundary element method. Specifically, friction and sliding effects, which are either excluded from or difficult to study with the classical methods, are routinely handled with the new procedure. Presented here are the basic theory and the algorithms. Several examples are given. Results are consistent with those of the classical theories. Applications to spur gears are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call