Abstract

Gears are one of the most essential and most significantly used power transmitting parts. Spur gears are more commonly used in practice as it is easy to manufacture and it is simple in design. The failure of gear is mainly attributed to stresses developed in the gears. Contact and bending stresses developed in the gears significantly reduce the lifetime of the gears being used. Materials which are tailored for specific applications can be put under test to minimise the stresses developed and increase the lifetime. Functionally graded materials are advanced materials with spatial gradation in composition to achieve specifically tailored properties. This work attempts to implement functionally graded materials (aluminium-steel, steel-zirconium) in the gears drives. Further, finite element analysis is used to evaluate its contact stresses for various distributive laws (exponential, linear, and power). In addition to that, the contact stress of the functionally graded spur gear is compared to a conventional gear material (EN8 Steel) to evaluate its contact load capacity. The contact stresses were assessed for various torque values. It was found that the change in the distributive laws influenced the contact stresses induced in gear. Also, aluminium-steel showed comparatively less contact stress compared to steel-zirconium and homogeneous steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call