Abstract

Contact resonance force microscopy (CRFM) is an atomic force microscopy (AFM) method that evolved from a curiosity about the detection of ultrasonic vibrations with an AFM cantilever and an unaddressed need to characterize the mechanical properties of stiffer materials (elastic modulus >50 GPa). The method has matured to allow near-surface and subsurface elastic property measurements of single crystals, thin films, nanomaterials, composites, and other advanced materials. More recently, CRFM has been extended to viscoelastic property measurements, where the CR frequency and CR quality factor are utilized to quantitatively assess properties such as storage modulus, loss modulus, and loss tangent. In this Perspective, we trace the evolution of CRFM from initial discovery to elastic property measurements to viscoelastic property measurements. The techniques for extending single-point property measurements to two-dimensional property maps are then described in terms of their operational characteristics, demons...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.