Abstract
The success of the graphene field-effect transistor (GFET) is primarily based on solving the problems associated with the growth and transfer of high-quality graphene, the deposition of dielectrics and contact resistance. The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. This is because process variability is inherent in semiconductor device manufacturing. Two units, even manufactured in the same batch, never show identical characteristics. Therefore, it is imperative that the effect of variability be studied with a view to obtain equivalent performance from similar devices. In this study, we undertake the variability of source and drain contact resistances and their effects on the performance of GFET. For this we have used a simulation method developed by us. The results show that the DC characteristics of GFET are highly dependent on the channel resistance. Also the ambipolar characteristics are strongly affected by the variation of source and drain resistances. We have captured their impact on the output as well as transfer characteristics of a dual gate GFET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.