Abstract
The metal-graphene contact resistance is one of the major limiting factors toward the technological exploitation of graphene in electronic devices and sensors. High contact resistance can be detrimental to device performance and spoil the intrinsic great properties of graphene. In this paper, we fabricate back-gate graphene field-effect transistors with different geometries to study the contact and channel resistance as well as the carrier mobility as a function of gate voltage and temperature. We apply the transfer length method and the y-function method showing that the two approaches can complement each other to evaluate the contact resistance and prevent artifacts in the estimation of carrier mobility dependence on the gate-voltage. We find that the gate voltage modulates both the contact and the channel resistance in a similar way but does not change the carrier mobility. We also show that raising the temperature lowers the carrier mobility, has a negligible effect on the contact resistance, and can induce a transition from a semiconducting to a metallic behavior of the graphene sheet resistance, depending on the applied gate voltage. Finally, we show that eliminating the detrimental effects of the contact resistance on the transistor channel current almost doubles the carrier field-effect mobility and that a competitive contact resistance as low as 700 Ω·μm can be achieved by the zig-zag shaping of the Ni contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.