Abstract

Among insects, beetles are one of the most destructive pests of agricultural and stored products. Researchers have been investigating alternatives to pesticides for more sustainable pest management. Here, we focused on insect transient receptor potential (TRP) channel-targeted repellency. Among transient receptor potential melastatin (TRPM) channels, mammalian TRPM8 is activated by menthol and its derivatives, but few previous studies have reported on whether the insect TRPM channel is activated by chemical compounds. Here, we investigated whether the TRPM channel (TcTRPM) of the red flour beetle Tribolium castaneum (Herbst), a major stored-products pest, mediated the repellent behavior of l-menthol and its derivatives. We initially investigated the repellent activity of l-menthol and menthoxypropanediol (MPD) against T. castaneum. The laboratory bioassay revealed that the repellent activities of l-menthol and MPD were dose dependent. RNA interference was used for transcriptional knockdown of TcTRPM and revealed that a reduced transcript level resulted in a significant decrease in l-menthol and MPD repellent activities. However, no significant decrease was observed for N,N-diethyl-3-methylbenzamide (DEET) repellency. The most abundant TcTRPM transcripts were observed in the antennae. However, antennae-plucked beetles maintained their repellent behavior with l-menthol. The repellent activities of l-menthol and MPD for T. castaneum are mediated by TcTRPM, and it was suggested that the olfactory response is not adequate for avoidance, but that contact repellency might be a more important repellant method. © 2020 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call