Abstract

A new method is proposed to estimate the contact region between a sensor and an object using a deformable tactile sensor. The sensor consists of a charge-coupled device (CCD) camera, light-emitting diode (LED) lights and a deformable touchpad. The sensor can obtain a variety of tactile information, such as the contact region, multi-axis contact force, slippage, shape, position and orientation of an object in contact with the touchpad. The proposed method is based on the movements of dots printed on the surface of the touchpad and classifies the contact state of dots into three types—A non-contacting dot, a sticking dot and a slipping dot. Considering the movements of the dots with noise and errors, equations are formulated to discriminate between the contacting dots and the non-contacting dots. A set of the contacting dots discriminated by the formulated equations can construct the contact region. Next, a method is developed to detect the dots in images of the surface of the touchpad captured by the CCD camera. A method to assign numbers to dots for calculating the displacements of the dots is also proposed. Finally, the proposed methods are validated by experimental results.

Highlights

  • Tactile receptors in the skin allow humans to sense multimodal tactile information such as the contact force, slippage, shape and temperature of a contacted object

  • We have proposed a vision-based tactile sensor that can sense multiple types of tactile information simultaneously including the slippage [23,24], contact region [25], shape [26], multi-axis contact force [27], position [25] and orientation [25] of an object

  • A set of the contacting dots discriminated by the formulated equations can construct the contact region

Read more

Summary

Introduction

Tactile receptors in the skin allow humans to sense multimodal tactile information such as the contact force, slippage, shape and temperature of a contacted object. By feeding back information from tactile receptors, humans can control their muscles dexterously. Tactile sensing is a crucial factor for robots to imitate skilled human behaviors. In consideration of practical applications, tactile sensors should meet three specific requirements. Flexible sensor surfaces are desirable because sensors should fit the object geometrically to avoid the contacted object from collapsing and enhance stability of the contact. A simple structure is required for compactness of robots. For achieving dexterous and multifunctional robots, we need a sensor which can obtain various types of tactile information simultaneously

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.