Abstract
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.