Abstract

In this paper we study the asymptotic critical value of contact processes with random connection weights, sitting on a degree-increasing sequence of r-regular graph Gr. We propose a method to generalize the asymptotics results for λc(Zd) and λc(Td) of classical contact processes as well as of recent work for contact processes on complete graphs with random connection weights. Only the lower bound is rigorously proved; it is conjectured, however, that the lower bound gives the right asymptotic behavior. For comparison purposes we also introduce binary contact path processes with random connection weights, whose asymptotic behavior of the critical value is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.