Abstract

Nonspatial stochastic models of populations subject to catastrophic events result in the common conclusion that the survival probability of the population is nondecreasing with respect to the random number of individuals removed at each catastrophe. The purpose of this paper is to prove that such a monotonic relationship is not true for simple spatial models based on Harris' contact processes, whose dynamics are described by hypergraph structures rather than traditional graph structures. More precisely, it is proved that, for a wide range of parameters, the destruction of (infinite) hyperplanes does not affect the existence of a nontrivial invariant measure, whereas the destruction of large (finite) cubes drives the population to extinction, a result that we depict by using the biological picture: forest fires are more devastating than tornadoes. This indicates that the geometry of the subsets struck by catastrophes is somewhat more important than their area, thus the need to consider spatial rather than nonspatial models in this context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.