Abstract

ABSTRACT We discuss several models for granular particles commonly used in Molecular Dynamics simulations of granular materials, including spheres with linear dashpot force, vis-coelastic spheres and adhesive viscoelastic spheres. Starting from the vectorial interaction forces we derive the coefficients of normal and tangential restitution as functions of the vectorial impact velocity and of the material constants. We review the methods of measurements of the coefficients of restitution and characterize the coefficient of normal restitution as a fluctuating quantity. Moreover, the scaling behavior and the influence of different force laws on the dynamical system behavior are discussed. The powerful method of event-driven Molecular Dynamics is described and the algorithmic simulation technique is explained in detail. Finally we discuss the limitations of event-driven MD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.