Abstract
The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit balls can have. Our method for finding lower and upper estimates for the largest contact numbers is a combination of analytic and combinatorial ideas and it is also based on some recent results on sphere packings. In particular, we prove that if C(n) denotes the largest number of touching pairs in a packing of n>1 congruent balls in Euclidean 3-space, then $0.695<\frac{6n-C(n)}{n^{\frac{2}{3}}}< \sqrt[3]{486}=7.862\dots$ for all $n=\frac{k(2k^{2}+1)}{3}$ with k≥2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.