Abstract

A frictional contact model, under the small deformations hypothesis, for static processes is considered. We model the behavior of the material by a constitutive law using the subdifferential of a proper, convex and lower semicontinuous function. The contact is described with a boundary condition involving Clarkeʼs generalized gradient. Our study focuses on the weak solvability of the model. Based on a fixed point theorem for set-valued mappings, we prove the existence of at least one weak solution. The uniqueness, the boundedness and the stability of the weak solution are also discussed; the investigation is based on arguments in the theory of variational–hemivariational inequalities. Finally, we present several examples of constitutive laws and friction laws for which our theoretical results are valid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.