Abstract
A virus binding to a surface causes stress of the virus cage near the contact area. Here, we investigate the potential role of substrate-induced structural perturbation in the mechanical response of virus particles to adsorption. This is particularly relevant to the broad category of viruses stabilized by weak noncovalent interactions. We utilize atomic force microscopy to measure height distributions of the brome mosaic virus upon adsorption from solution on atomically flat substrates and present a continuum model that captures our observations and provides estimates of elastic properties and of the interfacial energy of the virus, without recourse to indentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.