Abstract

Bordered pits in conifers have been recognized as a significant evolutionary characteristic that served to impede the spread of embolisms between tracheids. Nevertheless, there was a lack of comprehensive understanding regarding the mechanical properties of the torus and the pit border in relation to the formation of contact seals in aspirated pits. A solid mechanics model was developed to study aspirated bordered pits, incorporating the elastic deformation of the torus–margo structure and the contact behavior between the torus and the pit border. Ten pit samples were reconstructed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) pictures in order to develop mechanical models for pits in the stems of Platycladus orientalis. Due to the limited contact area on the torus surface, the contact pressure between the torus and the pit border exceeded the air pressure in aspirated bordered pits. The external force and the duration required to seal pits decreased when the pit diameter increased and the pit depth decreased. The augmentation of the torus and margo mass necessitated a lengthier duration for the closure of cavities. The findings presented in this study offered theoretical support for the capillary-seeding hypothesis. The aspiration in bordered pits mechanically depended on the structural and material characteristics of the torus and margo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call