Abstract

The dynamics of a receding water front displaced by (a) an immiscible droplet of dodecane and (b) an air bubble on smooth thiol and silane coated substrates has been investigated. For velocities below 0.02 m/s, the three phase contact line motion is captured by the molecular kinetic theory. The corresponding wetting parameters show a dependence on surface hydrophobicity, irrespective of the substrate chemistry. The contact line frictions for both liquid–liquid and liquid–vapor systems are directly compared by using an existing approach and a new model that adds the contributions of the individual fluid viscosities. For both systems, the contact line friction increases with the affinity of the fluids for the substrate. Three phase contact line motion occurs via the concerted movement of clusters of molecules or contact line segments, rather than through individual molecular displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.