Abstract

BackgroundPrevious studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application.MethodsContact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin.ResultsUnder laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%.Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.

Highlights

  • Dengue, transmitted primarily by Aedes aegypti mosquitoes, is the most important mosquito-borne viral disease affecting humans worldwide [1]

  • Other chemical actions that break vector-human contact exist: contact irritant effects, causing escape from homes and spatial repellent effects, preventing house entry. These actions are being evaluated in the development of a push-pull strategy to target indoor resting sites and/or portals of house entry at sublethal concentrations to push the vector away from the treated structure and associated human hosts

  • Findings indicate an increase in escape response using sublethal concentrations and focal application suggesting a potential role for contact irritants in a push-pull strategy

Read more

Summary

Introduction

Dengue, transmitted primarily by Aedes aegypti mosquitoes, is the most important mosquito-borne viral disease affecting humans worldwide [1]. Aedes aegypti has strong associations with human habitations, living and breeding very near or inside human dwellings [3,4,5] This extensive use of the human indoor environment poses challenges to traditional adult control methods and as well as in devising new or improved methods to sufficiently reduce disease transmission risk [6]. Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call