Abstract

ObjectivesTo determine the minimum thickness required for a monolithic hybrid ceramic crown on different substrates (soft vs stiff) used in posterior dentition for bruxism. Methods80 polymer-infiltrated ceramic networks Vita Enamic (PICN VE) disc specimens with four different occlusal thicknesses (0.8, 1.2, 1.6 and 2.0 mm), were produced using a computer-aided design/manufacturing system, and cemented on a stiff (zirconia) or soft (polyamide) substrate of 4-mm thickness. The ten specimens, in soft or stiff groups, were subjected to compressive loading by a MTS machine until fracture or maximum load (4500 N) was reached. The unbroken specimens were examined using optical coherence tomography. Eight axisymmetric finite element models and eight 3D models comprising the four different occlusal thicknesses and two substrates under different vertical loads and sliding movements were constructed. The maximum principal stress was selected to evaluate the stress distribution in this study. ResultsThe fracture resistance of the specimens was significantly different between the two substrates (P < 0.001). Fracture resistance was positively associated with specimen thickness (r = 0.597 and 0.896 for the soft and stiff substrate respectively). Specimens on the soft substrate had lower fracture loads, whilst cone cracks were observed in unbroken samples on different soft/stiff substrate prior to final fracture. The finite element analysis confirmed that samples on the stiff substrate had lower maximum principal stress values than those on the soft substrate. For the maximum principal stress not to exceed the flexural strength of PICN VE, a stiff substrate and minimum thickness of 2.0 mm are required for the prostheses. SignificanceA minimum 2.0 mm thick, stiff substrate was needed for bruxism as shown by the effect of high/large chewing force on the posterior dentition of monolithic PICN VE crowns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.