Abstract

Force estimation methods enable robots to interact with the environment or humans compliantly and safely without additional sensing device. In this paper, we present a novel method for estimating unknown contact forces exerted on a robot manipulator. The force estimation method is divided into two steps. The first step is to identify a robot dynamics model. A parametric model is derived first based on rigid-body dynamic (RBD) theory. To improve the model accuracy, a nonparametric compensator trained with multilayer perception (MLP) is added to compensate for errors of the RBD model. The result is a semiparametric model that provides better model accuracy than either the RBD model or the MLP model alone. The second step is to construct a force estimation observer. A novel estimation method called disturbance Kalman filter (DKF) is developed in this paper. The design of DKF based on a time-invariant composite system model is presented. DKF can take both manipulator's dynamics model and disturbance's dynamics model into account. As with Kalman filter, it can provide robust and accurate estimation against uncertainty. Simulation and experimental results, obtained using a six-degrees-of-freedom Kinova Jaco2 manipulator, demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.