Abstract
AbstractBees can be exposed to pesticides when visiting crops or plants in adjacent areas affected by spray drift. Among pesticide categories, fungicides tend to be considered relatively safe, though they also can negatively affect pollinators. Most evidence of damage by fungicides to bees comes from laboratory tests; there is little information concerning contamination levels in the field. We examined exposure of honey bees (Apis mellifera L.) (Hymenoptera: Apidae) and a common Brazilian native species of social stingless bees (Scaptotrigona postica Latreille; Hymenoptera: Apidae), which is about a third the size of a honey bee, to a commercial fungicide (Fox Xpro), with three active ingredients (trifloxystrobin, bixafen, and prothioconazole), applied to crops they often visit according to label directions. A spraying apparatus mounted on tracks in a laboratory spray room was used to simulate field conditions. Soybean and cotton plants grown in pots were transferred to the spray room when the plants were in flower. Anaesthetized bees were attached with insect pins at the top and middle of the plants, on leaves and flowers. The fungicide was applied using fine or coarse droplets. The amounts of the individual active ingredients absorbed by bees were then quantified. Concentrations of trifloxystrobin were highest in both honey bees and stingless bees, followed by bixafen, and then prothioconazole, which was detected in the bees at much lower levels. Overall, bees at the top of the plants and those sprayed with fine droplets absorbed more pesticide. As a function of body mass, the stingless bees were more heavily contaminated than the larger honey bees. Tests using spraying systems that simulate field conditions can better estimate the actual doses that contaminate bees to help determine the impact of fungicides and other pesticides applied to crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.