Abstract

This letter presents rectifiers based on the diode connection of carbon nanotube network (CNN) transistors. Despite a low density of carbon nanotubes in the CNNs, the devices can achieve excellent performance with a forward/reverse current ratio reaching . By casting nanotube suspension on oxidized Si substrates with predefined electrodes, CNN-based field-effect transistors are readily prepared. By short-circuiting the source and gate terminals, CNN-based rectifiers are realized with the rectification characteristics independent of whether Pd or Al is employed as the contact electrodes. This independence is especially attractive for applications of CNN-based transistors/rectifiers in flexible electronics with various printing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.