Abstract
Homeotasis in vivo is maintained by a highly complex network of positive and negative signals. At the cellular level, this regulatory microenviroment can be divided, in a simplified fashion, into two major compartments: the humoral compartment, including compounds such as hormones, growth factors and nutrients, and the contact-environment compartment, including cell-cell and cell-matrix interactions. At least in cultures of diploid, non-transformed cells, cell-cell and cell-matrix interactions have been shown to be of major importance for the regulation of growth as well as of differentiation. Although until now the glycoprotein involved in the contact-dependent inhibition of growth has not been fully characterized, our studies give evidence for the involvement of a plasma membrane glycoprotein with an apparent molecular weight of ∼80 kDa in the growth regulation of diploid human fibroblast. The important characteristics of this glycoprotein is: the biologically active determinant resides in terminal, β-glycosidically linked galactose residues on N-glycosidically linked glycans. From our studies, a receptor has to be postulated which, in addition to the galactose residues, has additional structural requirements for the specific binding of this glycoprotein, sicne other glycoproteins carrying terminal, β-glycosidically linked galactose-residues are without biological activity. The postulated receptor is suggested to be defective in tumor cells, since these cells are no longer able to respond to cell-cell contacts with stopped proliferation, although they are able to inhibit growth of non-transformed cells. The inability of a tumor cell to recognize and to bind to the specific glycoprotein would result in a release from growth inhibition, leading to clonal growth of these cells. Further detailed studies on the structure and the regulation of the glycoprotein, as well as an attempt to isolate the postulated receptor, should lead to a better understanding of the complex pattern of growth regulation of normal cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.