Abstract

To examine whether Ca2+ channels aggregate in a contact-dependent manner, we characterized the distribution of synaptic vesicles and postsynaptic receptors, and compared it to the location of Ca2+ entry sites, in a Xenopus laevis nerve-muscle coculture preparation using a localized Ca2+ detection method. The majority (75%) of Ca2+ entry sites at spontaneously formed nerve-muscle contacts were associated with enhanced immunofluorescence to the synaptic vesicle protein, SV2. In contrast, only 11% of recorded sites without Ca2+ transients exhibited significant SV2 immunofluorescence. When comparing the spatial distribution of synaptic markers with that of Ca2+ entry sites, we found that the majority of Ca2+ entry sites (61%) were associated with both enhanced SV2 immunofluorescence and R-BTX fluorescence, thereby identifying putative neurotransmitter release sites where Ca2+ channels, synaptic vesicles and postsynaptic receptors are colocalized. Using polystyrene beads coated with a heparin binding protein known to mediate in vitro postsynaptic receptor clustering, we show that the location of Ca2+ domains was associated with enhanced SV2 immunofluorescence at neurite-to-bead contacts. We conclude that the localization of functional Ca2+ channels to putative active zones follows a contact-dependent signalling mechanism similar to that known to mediate vesicle aggregation and AChR clustering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.